Column expressions
Table Column expression
Your Query Instruction can pull data from Junction summary and timeseries resources through Table Column expressions.
Each Table Column expression can select one column (a field) of the table (the Vital resource). You can use multiple Table Column expressions to select multiple columns in the same query.
Cross-table query instruction is not supported — you cannot mix Table Column expressions from different tables in the same query instruction.
Column expressions for Electrocardiogram, Sleep Cycle, Menstrual Cycle and lab testing biomarkers are planned to be introduced in the future.
Summaries
Table | Python DSL | JSON DSL |
---|---|---|
Activity daily summaryactivity | Activity.col("$1") | { "activity": "$1" } |
Body summarybody | Body.col("$1") | { "body": "$1" } |
Sleep summarysleep | Sleep.col("$1") | { "sleep": "$1" } |
Workout summaryworkout | Workout.col("$1") | { "workout": "$1" } |
Meal summarymeal | Meal.col("$1") | { "meal": "$1" } |
Timeseries
Table | Python DSL | JSON DSL |
---|---|---|
Timeseries Resource fields | Timeseries.col("$1").field("$2") | { "timeseries": "$1", "field": "$2"} |
Source Column expression
You can use a Source Column expression to refer to Data Source fields common to Junction resources.
Note that some Source Column expression may not be valid in the implicit query context. For example, source_sport
is not a valid Source Column
expression in a query that is selecting from the Sleep resource.
If both the Provider and Source Type Source Columns are present in the Group By clause, the implicit Data Prioritization behaviour would be disabled.
Column | Python DSL | JSON DSL | Available in |
---|---|---|---|
Provider | Source.col("source_provider") | { "source": "source_provider" } | All Tables |
Source Type | Source.col("source_type") | { "source": "source_type" } | All Tables |
Source App ID | Source.col("source_app_id") | { "source": "source_app_id" } | All summary tables |
Workout ID | Source.col("source_workout_id") | { "source": "source_workout_id"} | Workout Stream timeseries only |
Sport | Source.col("source_sport") | { "source": "source_sport" } | Workout Stream timeseries only |
Index Column expression
Each Vital resource has a primary datetime index. Your Query Instruction can reference this datetime index using the special Index Column expression:
Table | Index | Python DSL | JSON DSL |
---|---|---|---|
Activity daily summaryactivity | Calendar date | Activity.index() | { "index": "activity" } |
Body summarybody | Measurement datetime | Body.index() | { "index": "body" } |
Sleep summarysleep | Session end datetime | Sleep.index() | { "index": "sleep" } |
Workout summaryworkout | Session start datetime | Workout.index() | { "index": "workout" } |
Group Key Column expression
When your Query Instruction uses the group_by
clause, each expression
in the group_by
clause creates a temporary Group Key Column (group_key.$OFFSET
). These temporary columns are then used to
facilitate the data grouping and aggregation as specified by your Query Instruction.
You can refer to these columns using the special Group Key Column expression:
Group Key Columns | Python DSL | JSON DSL |
---|---|---|
All | group_key("*") | { "group_key": "*" } |
The $N -th key | group_key($N) | { "group_key": $N } |